342 research outputs found

    Structural Nested Models and G-estimation: The Partially Realized Promise

    Get PDF
    Structural nested models (SNMs) and the associated method of G-estimation were first proposed by James Robins over two decades ago as approaches to modeling and estimating the joint effects of a sequence of treatments or exposures. The models and estimation methods have since been extended to dealing with a broader series of problems, and have considerable advantages over the other methods developed for estimating such joint effects. Despite these advantages, the application of these methods in applied research has been relatively infrequent; we view this as unfortunate. To remedy this, we provide an overview of the models and estimation methods as developed, primarily by Robins, over the years. We provide insight into their advantages over other methods, and consider some possible reasons for failure of the methods to be more broadly adopted, as well as possible remedies. Finally, we consider several extensions of the standard models and estimation methods.Comment: Published in at http://dx.doi.org/10.1214/14-STS493 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graphical models for mediation analysis

    Full text link
    Mediation analysis seeks to infer how much of the effect of an exposure on an outcome can be attributed to specific pathways via intermediate variables or mediators. This requires identification of so-called path-specific effects. These express how a change in exposure affects those intermediate variables (along certain pathways), and how the resulting changes in those variables in turn affect the outcome (along subsequent pathways). However, unlike identification of total effects, adjustment for confounding is insufficient for identification of path-specific effects because their magnitude is also determined by the extent to which individuals who experience large exposure effects on the mediator, tend to experience relatively small or large mediator effects on the outcome. This chapter therefore provides an accessible review of identification strategies under general nonparametric structural equation models (with possibly unmeasured variables), which rule out certain such dependencies. In particular, it is shown which path-specific effects can be identified under such models, and how this can be done

    Natural direct and indirect effects on the exposed : effect decomposition under weaker assumptions

    Get PDF
    We define natural direct and indirect effects on the exposed. We show that these allow for effect decomposition under weaker identification conditions than population natural direct and indirect effects. When no confounders of the mediator-outcome association are affected by the exposure, identification is possible under essentially the same conditions as for controlled direct effects. Otherwise, identification is still possible with additional knowledge on a nonidentifiable selection-bias function which measures the dependence of the mediator effect on the observed exposure within confounder levels, and which evaluates to zero in a large class of realistic data-generating mechanisms. We argue that natural direct and indirect effects on the exposed are of intrinsic interest in various applications. We moreover show that they coincide with the corresponding population natural direct and indirect effects when the exposure is randomly assigned. In such settings, our results are thus also of relevance for assessing population natural direct and indirect effects in the presence of exposure-induced mediator-outcome confounding, which existing methodology has not been able to address

    Make the most of your samples : Bayes factor estimators for high-dimensional models of sequence evolution

    Get PDF
    Background: Accurate model comparison requires extensive computation times, especially for parameter-rich models of sequence evolution. In the Bayesian framework, model selection is typically performed through the evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often, each model's marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from errors associated with each of these independent estimation processes. Results: We here assess the original 'model-switch' path sampling approach for direct Bayes factor estimation in phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing models, thereby eliminating the need to calculate each model's marginal likelihood independently. Further, we provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect more subtle details of the evolutionary process. Conclusions: We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the latter systematically overestimate the performance of high-dimensional models, which we show can lead to erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for high-dimensional models requires much more computational effort than suggested in recent studies on marginal likelihood estimation

    A new approach for within-subject mediation analysis in AB/BA crossover designs

    Get PDF
    Crossover trials are widely used in psychological and medical research to assess the effect of reversible exposures. In such designs, each subject is randomly allocated to a sequence of conditions, enabling the evaluation of treatment differences within each individual. When there are but two possible exposures -each assessed during one of two time periods-, the crossover study is referred to as an AB/BA design. The goal of this presentation is to discuss mediation analysis in such simple crossover studies. We do so by considering within-subject mediation from a counterfactual-based perspective and by deriving expressions for the direct and indirect effects. Employing simulation studies, the performance of several existing methods will be assessed and compared to that of a novel one we propose. We show that the new method yields unbiased and efficient estimators for the direct and indirect effect, under a minimalistic set of `no unmeasured confounding'-assumptions. Finally, we illustrate the different techniques with data from a neurobehavioral study
    corecore